Regulation of higher-order chromatin structures by nucleosome-remodelling factors
pmid: 16503135
Regulation of higher-order chromatin structures by nucleosome-remodelling factors
Nucleosome-remodelling factors are key facilitators of chromatin dynamics. At the level of single nucleosomes, they are involved in nucleosome-repositioning, altering histone-DNA interactions, disassembly of nucleosomes, and the exchange of histones with variants of different properties. The fundamental nature of chromatin dictates that nucleosome-remodelling affects all aspects of eukaryotic DNA metabolism, but much less is known about the functional interactions of nucleosome-remodelling factors with folded chromatin fibres. Because remodelling machines are abundant constituents of eukaryotic nuclei and, therefore, have ample potential to interact with chromatin, they might also affect higher-order chromatin architecture. Recent observations support roles for nucleosome-remodelling factors at the supra-nucleosomal level.
Gene Expression Regulation, Animals, Humans, Models, Biological, Chromatin, Nucleosomes
Gene Expression Regulation, Animals, Humans, Models, Biological, Chromatin, Nucleosomes
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
