Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Genetics & Development
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Regulation of higher-order chromatin structures by nucleosome-remodelling factors

Authors: Patrick D, Varga-Weisz; Peter B, Becker;

Regulation of higher-order chromatin structures by nucleosome-remodelling factors

Abstract

Nucleosome-remodelling factors are key facilitators of chromatin dynamics. At the level of single nucleosomes, they are involved in nucleosome-repositioning, altering histone-DNA interactions, disassembly of nucleosomes, and the exchange of histones with variants of different properties. The fundamental nature of chromatin dictates that nucleosome-remodelling affects all aspects of eukaryotic DNA metabolism, but much less is known about the functional interactions of nucleosome-remodelling factors with folded chromatin fibres. Because remodelling machines are abundant constituents of eukaryotic nuclei and, therefore, have ample potential to interact with chromatin, they might also affect higher-order chromatin architecture. Recent observations support roles for nucleosome-remodelling factors at the supra-nucleosomal level.

Keywords

Gene Expression Regulation, Animals, Humans, Models, Biological, Chromatin, Nucleosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 1%