Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1984 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Interspecific DNA transformation in Drosophila.

Authors: N J Scavarda; Daniel L. Hartl;

Interspecific DNA transformation in Drosophila.

Abstract

A DNA fragment that includes the wild-type rosy (ry+) gene of Drosophila melanogaster has been introduced by microinjection into the germ line of the reproductively isolated species Drosophila simulans and incorporated into the D. simulans genome. Transformation was mediated by the transposable element P, which occurs in the genome of most natural populations of D. melanogaster but not in D. simulans. Rubin and Spradling [Rubin, G.M. & Spradling, A.C. (1982) Science 218, 348-353] have previously shown that the ry+ DNA fragment, which is flanked by recognition sequences of P element, can transform the germ line of D. melanogaster. Successful transformation in D. simulans indicates that the P element continues to function as a transposable element in the D. simulans genome. Moreover, the ry+ gene of D. melanogaster functions in the genome of D. simulans to produce normal eye color, despite the estimated 1 to 5 million yr of reproductive isolation since the evolutionary divergence of these species. Interspecific DNA transformation provides a useful method for the study of genetic differences affecting gene expression among related but reproductively isolated species.

Keywords

Drosophila melanogaster, Transformation, Genetic, Genes, Species Specificity, DNA Transposable Elements, Animals, Nucleic Acid Hybridization, Drosophila, DNA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Average
Top 10%
Top 10%
Green
hybrid