Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish

Authors: Song, Jianbo; Kim, Hyon J.; Gong, Zhiyuan; Liu, Ning-Ai; Lin, Shuo;

Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish

Abstract

Bmp, Fgf, and retinoic acid (RA) signals have been implicated as regulators of pancreas development. However, the integration of these signaling pathways in vivo is not fully understood. Variant hnf1 (Vhnf1) is a transcription factor involved in pancreas, liver, and kidney development and its mutation in zebrafish causes underdeveloped pancreas and liver. We investigated the signaling pathways that regulate vhnf1 expression during pancreas development. First, we showed that Bmp activity is required for vhnf1 expression in the endoderm. In chordin (a Bmp antagonist) morpholino (MO)-injected embryos, vhnf1 expression in endoderm and in endocrine beta cells is expanded. On the other hand, in alk8 (a type I TGFbeta receptor) MO-injected embryos, vhnf1 expression in the endoderm is significantly reduced. Second, we showed that Fgf signaling participates in regulation of pancreas development through the vhnf1 pathway. Third, we demonstrated that RA fails to rescue reduction of insulin expression in vhnf1 mutants, whereas overexpression of vhnf1 restores insulin expression that is repressed by treatment with a RA receptor inhibitor. And finally, we revealed that both Bmp and Fgf signals act genetically upstream of RA in directing pancreas development. Taken together, our data establish that vhnf1 acts downstream of the signaling pathways of RA, Bmp, and Fgf to regulate pancreas development in zebrafish.

Related Organizations
Keywords

vhnf1, Tretinoin, Models, Biological, Oligodeoxyribonucleotides, Antisense, Insulin-Secreting Cells, Pancreas development, Fgf, Bmp, Animals, Insulin, Point Mutation, Molecular Biology, Zebrafish, Hepatocyte Nuclear Factor 1-beta, Base Sequence, Gene Expression Regulation, Developmental, Epistasis, Genetic, Cell Biology, Zebrafish Proteins, Fibroblast Growth Factors, Bone Morphogenetic Proteins, RA, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
hybrid