Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1999 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 1999
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1999
versions View all 4 versions

Differential transcriptional control as the major molecular event in generating Otx1−/− and Otx2−/− divergent phenotypes

Authors: Acampora D; Avantaggiato V; Tuorto F; Barone P; Perera M; Choo D; Wu D; +2 Authors

Differential transcriptional control as the major molecular event in generating Otx1−/− and Otx2−/− divergent phenotypes

Abstract

Abstract Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, show a limited amino acid sequence divergence. Their embryonic expression patterns overlap in spatial and temporal profiles with two major exceptions: until 8 days post coitum (d.p.c.) only Otx2 is expressed in gastrulating embryos, and from 11 d.p.c. onwards only Otx1 is transcribed within the dorsal telencephalon. Otx1 null mice exhibit spontaneous epileptic seizures and multiple abnormalities affecting primarily the dorsal telencephalic cortex and components of the acoustic and visual sense organs. Otx2 null mice show heavy gastrulation abnormalities and lack the rostral neuroectoderm corresponding to the forebrain, midbrain and rostral hindbrain. In order to define whether these contrasting phenotypes reflect differences in expression pattern or coding sequence of Otx1 and Otx2 genes, we replaced Otx1 with a human Otx2 (hOtx2) full- coding cDNA. Interestingly, homozygous mutant mice (hOtx21/hOtx21) fully rescued epilepsy and corticogenesis abnormalities and showed a significant improvement of mesencephalon, cerebellum, eye and lachrymal gland defects. In contrast, the lateral semicircular canal of the inner ear was never recovered, strongly supporting an Otx1-specific requirement for the specification of this structure. These data indicate an extended functional homology between OTX1 and OTX2 proteins and provide evidence that, with the exception of the inner ear, in Otx1 and Otx2 null mice contrasting phenotypes stem from differences in expression patterns rather than in amino acid sequences.

Keywords

Homeodomain Proteins, Mice, Knockout, Epilepsy, Otx Transcription Factors, Histocytochemistry, Brain, Gene Expression Regulation, Developmental, Ear, Electroencephalography, Nerve Tissue Proteins, Semicircular Canals, Mice, Phenotype, Trans-Activators, Animals, Humans, RNA, Messenger, Cell Division, In Situ Hybridization, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%