Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2000
versions View all 2 versions

Structure, Expression, and Chromosome Mapping of LATS2, a Mammalian Homologue of the Drosophila Tumor Suppressor Gene lats/warts

Authors: N, Yabuta; T, Fujii; N G, Copeland; D J, Gilbert; N A, Jenkins; H, Nishiguchi; Y, Endo; +4 Authors

Structure, Expression, and Chromosome Mapping of LATS2, a Mammalian Homologue of the Drosophila Tumor Suppressor Gene lats/warts

Abstract

We have cloned and characterized LATS2, a novel mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Northern blot analysis showed ubiquitous expression of mouse LATS2 (MmLATS2) mRNA, whereas expression of human LATS2 (HsLATS2) mRNA was enhanced in skeletal muscle and heart. Immunoblotting analysis of fractionated cell lysates showed HsLats2 to be a nuclear protein. We mapped the MmLATS2 gene to mouse chromosome 14 by interspecific backcross analysis. We also mapped the HsLATS2 gene (by fluorescence in situ hybridization) to the 13q11-q12 region, in which a loss of heterozygosity has been frequently observed in many primary cancers and to which the tumor suppressor genes RB and BRCA2 have also been mapped.

Related Organizations
Keywords

DNA, Complementary, Chromosomes, Human, Pair 13, Sequence Homology, Amino Acid, Tumor Suppressor Proteins, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Genes, Insect, Protein Serine-Threonine Kinases, Mice, Animals, Drosophila Proteins, Humans, Drosophila, Genes, Tumor Suppressor, Amino Acid Sequence, RNA, Messenger, Protein Kinases, In Situ Hybridization, Fluorescence, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research