Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Endocrinology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Endocrinology
Article . 2022
Data sources: DOAJ
versions View all 4 versions

Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing

Authors: Hye-Sun Park; Yeon Hee Lee; Namki Hong; Dongju Won; Yumie Rhee;

Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing

Abstract

Primary hyperparathyroidism (PHPT) is characterized by overproduction of parathyroid hormone and subsequent hypercalcemia. Approximately 10% of PHPT cases are hereditary, and several genes, such as MEN1, RET, CASR, and CDC73, are responsible for the familial forms of PHPT. However, other genetic mutations involved in the etiology of PHPT are largely unknown. In this study, we identified genetic variants that might be responsible for PHPT, including familial PHPT, benign sporadic PHPT, and sporadic parathyroid cancer, using next-generation sequencing (NGS). A total of 107 patients with PHPT who underwent NGS from 2017 to 2021 at Severance Hospital were enrolled. We reviewed the pathogenic variants, likely pathogenic variants, and variants of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Of the 107 patients (mean age: 47.6 ± 16.1 years, women 73.8%), 12 patients were diagnosed with familial PHPT, 13 with parathyroid cancer, and 82 with benign sporadic PHPT. Using NGS, we identified three pathogenic variants in two genes (CDC73 and MEN1), 10 likely pathogenic variants in six genes (CASR, CDC73, LRP5, MEN1, SDHA, and VHL), and 39 non-synonymous VUS variants that could be related to parathyroid disease. Interestingly, we identified one GCM2 variant (c.1162A>G [p.Lys388Glu]) and five APC variants that were previously reported in familial isolated hyperparathyroidism, benign sporadic PHPT, and parathyroid cancer. We also analyzed the characteristics of subjects with positive genetic test results (pathogenic or likely pathogenic variants), and 76.9% of them had at least one of the following features: 1) age < 40 years, 2) family history of PHPT, 3) multiglandular PHPT, or 4) recurrent PHPT. In this study, we analyzed the NGS data of patients with PHPT and observed variants that could possibly be related to PHPT pathogenesis. NGS screening for selected patients with PHPT might help in the diagnosis and management of the disease.

Keywords

Adult, sporadic primary hyperparathyroidism, 610, variants of unknown significance (VUS), Diseases of the endocrine glands. Clinical endocrinology, Endocrinology, Transcription Factors / genetics, 617, Humans, Germ-Line Mutation, Parathyroid Neoplasms* / complications, parathyroid cancer, Hyperparathyroidism, Primary* / genetics, High-Throughput Nucleotide Sequencing, Middle Aged, RC648-665, Hyperparathyroidism, Primary, Parathyroid Neoplasms, germline mutation, next-generation sequencing, germline mutation, Hypercalcemia, next-generation sequencing, familial primary hyperparathyroidism, Female, Hypercalcemia* / complications, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
gold