Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Shq1p·Naf1p Complex Is Required for Box H/ACA Small Nucleolar Ribonucleoprotein Particle Biogenesis

Authors: Pok Kwan, Yang; Giuseppe, Rotondo; Tanya, Porras; Pierre, Legrain; Guillaume, Chanfreau;

The Shq1p·Naf1p Complex Is Required for Box H/ACA Small Nucleolar Ribonucleoprotein Particle Biogenesis

Abstract

Small nucleolar ribonucleoprotein particles (snoRNPs) are essential cofactors in ribosomal RNA metabolism. Although snoRNP composition has been thoroughly characterized, the biogenesis process of these particles is poorly understood. We have identified two proteins from the yeast Saccharomyces cerevisiae, Yil104c/Shq1p and Ynl124w/Naf1p, which are essential and required for the stability of box H/ACA snoRNPs. Depletion of either Shq1p or Naf1p leads to a dramatic and specific decrease in box H/ACA snoRNA levels in vivo. A severe concomitant defect in ribosomal RNA processing is observed, consistent with the depletion of this family of snoRNAs. Shq1p and Naf1p show nuclear localization and interact with Nhp2p and Cbf5p, two core proteins of mature box H/ACA snoRNPs. Shq1p and Naf1p form a complex, but they are not strongly associated with box H/ACA snoRNPs. We propose that Shq1p and Naf1p are involved in the early biogenesis steps of box H/ACA snoRNP assembly.

Related Organizations
Keywords

Ribonuclease III, Saccharomyces cerevisiae Proteins, Macromolecular Substances, Nuclear Proteins, RNA, Fungal, Saccharomyces cerevisiae, Ribonucleoproteins, Small Nuclear, Fungal Proteins, RNA, Ribosomal, Two-Hybrid System Techniques, Endoribonucleases, RNA Processing, Post-Transcriptional

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
gold