Microservice chatbot architecture for chronic patient support
pmid: 31622802
Microservice chatbot architecture for chronic patient support
Chatbots are able to provide support to patients suffering from very different conditions. Patients with chronic diseases or comorbidities could benefit the most from chatbots which can keep track of their condition, provide specific information, encourage adherence to medication, etc. To perform these functions, chatbots need a suitable underlying software architecture. In this paper, we introduce a chatbot architecture for chronic patient support grounded on three pillars: scalability by means of microservices, standard data sharing models through HL7 FHIR and standard conversation modeling using AIML. We also propose an innovative automation mechanism to convert FHIR resources into AIML files, thus facilitating the interaction and data gathering of medical and personal information that ends up in patient health records. To align the way people interact with each other using messaging platforms with the chatbot architecture, we propose these very same channels for the chatbot-patient interaction, paying special attention to security and privacy issues. Finally, we present a monitored-data study performed in different chronic diseases, and we present a prototype implementation tailored for one specific chronic disease, psoriasis, showing how this new architecture allows the change, the addition or the improvement of different parts of the chatbot in a dynamic and flexible way, providing a substantial improvement in the development of chatbots used as virtual assistants for chronic patients.
- University of Zaragoza Spain
Automation, Information Dissemination, Communication, Chronic Disease, Psychosocial Support Systems, Humans, Software, Telemedicine
Automation, Information Dissemination, Communication, Chronic Disease, Psychosocial Support Systems, Humans, Software, Telemedicine
3 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
