Shwachman-Diamond Syndrome and the Quality Control of Ribosome Assembly
Shwachman-Diamond Syndrome and the Quality Control of Ribosome Assembly
Abstract The synthesis of new ribosomes is a fundamental conserved process in all cells. Ribosomes are pre-assembled in the nucleus and subsequently exported to the cytoplasm where they acquire functionality through a series of final maturation steps that include formation of the catalytic center, recruitment of the last remaining ribosomal proteins and the removal of inhibitory assembly factors. Surprisingly, a number of key factors (SBDS, DNAJC21, RPL10 (uL16)) involved in late cytoplasmic maturation of the large (60S) ribosomal subunit are mutated in both inherited and sporadic forms of leukemia. In particular, biallelic mutations in the SBDS gene cause Shwachman-Diamond syndrome (SDS), a recessive bone marrow failure disorder with significant predisposition to acute myeloid leukemia. By using the latest advances in single-particle cryo-electron microscopy to elucidate the function of the SBDS protein, we have uncovered an elegant mechanism that couples final maturation of the 60S subunit to a quality control assessment of the structural integrity of the active sites of the ribosome. Further molecular dissection of this pathway may inform novel therapeutic strategies for SDS and leukemia more generally. References: 1. Weis F, Giudice E, Churcher M,et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol, (2015) Nov;22(11):914-9. 2. Wong CC, Traynor D, Basse N, et al. Defective ribosome assembly in Shwachman-Diamond syndrome. Plenary Paper, Blood. 2011 Oct 20;118(16):4305-12. 3. Finch AJ, Hilcenko C, Basse N, et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev (2011) 25: 917-929. 4. Menne TM, Goyenechea B, Sánchez-Puig N, et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genetics (2007) 39: 486-95. Disclosures No relevant conflicts of interest to declare.
- University of Cambridge United Kingdom
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
