CNTNAP2 ectodomain, detected in neuronal and CSF sheddomes, modulates Ca2+ dynamics and network synchrony
doi: 10.1101/605378
CNTNAP2 ectodomain, detected in neuronal and CSF sheddomes, modulates Ca2+ dynamics and network synchrony
SUMMARYWhile many neuronal membrane-anchored proteins undergo proteolytic cleavage, little is known about the biological significance of neuronal ectodomain shedding. Using mass spectrometry (MS)-based proteomics, we showed that the neuronal sheddome mirrors human cerebrospinal fluid (hCSF). Among shed synaptic proteins in hCSF was the ectodomain of CNTNAP2 (CNTNAP2-ecto), a risk factor for neurodevelopmental disorders (NDD). Using structured-illumination microscopy (SIM), we mapped the spatial organization of neuronal CNTNAP2-ecto shedding. Using affinity chromatography followed by MS, we identified the ATP2B/PMCA Ca2+ extrusion pumps as novel CNTNAP2-ecto binding partners. CNTNAP2-ecto coimmunoprecipitates with PMCA2, a known autism risk factor, and enhances its activity, thereby modulating neuronal Ca2+ levels. Finally, we showed that CNTNAP2-ecto regulates neuronal network synchrony in primary cultures and brain slices. These data provide new insights into the biology of synaptic ectodomain shedding and reveal a novel mechanism of regulation of Ca2+ homeostasis and neuronal network synchrony.
- Technical University of Munich Germany
- Northwestern University United States
- RBHS-ROBERT WOOD JOHNSON MEDICAL SCHOOL
- German Center for Neurodegenerative Diseases Germany
- Institute for Advanced Study Germany
2 Research products, page 1 of 1
- 2022IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
