Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton

Authors: Massaro, Catherine M; Pielage, Jan; Davis, Graeme W;

Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton

Abstract

Loss of spectrin or ankyrin in the presynaptic motoneuron disrupts the synaptic microtubule cytoskeleton and leads to disassembly of the neuromuscular junction (NMJ). Here, we demonstrate that NMJ disassembly after loss of α-spectrin can be suppressed by expression of a WldS transgene, providing evidence for a Wallerian-type degenerative mechanism. We then identify a second signaling system. Enhanced MAPK-JNK-Fos signaling suppresses NMJ disassembly despite loss of presynaptic α-spectrin or ankyrin2-L. This signaling system is activated after an acute cytoskeletal disruption, suggesting an endogenous role during neurological stress. This signaling system also includes delayed, negative feedback via the JNK phosphatase puckered, which inhibits JNK-Fos to allow NMJ disassembly in the presence of persistent cytoskeletal stress. Finally, the MAPK-JNK pathway is not required for baseline NMJ stabilization during normal NMJ growth. We present a model in which signaling via JNK-Fos functions as a stress response system that is transiently activated after cytoskeletal disruption to enhance NMJ stability, and is then shut off allowing NMJ disassembly during persistent cytoskeletal disruption.

Related Organizations
Keywords

Ankyrins, 570, 1.1 Normal biological development and functioning, Neuromuscular Junction, Fluorescent Antibody Technique, Genetically Modified, Medical and Health Sciences, Direct, Animals, Genetically Modified, Underpinning research, Animals, Transgenes, Research Articles, Cytoskeleton, Neurosciences, Spectrin, 600, Biological Sciences, Immunohistochemistry, Fluorescent Antibody Technique, Direct, Mutation, Synapses, Drosophila, RNA Interference, Microtubule-Associated Proteins, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Green
hybrid