Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Loading of a Phenanthroline-Based Platinum(ii) Complex onto the Surface of a Carbon Nanotube via p–p Stacking

Authors: Houston, Stephanie; Venkataramanan, Natarajan; Suvitha, Ambigapathy; Wheate, Nial;

Loading of a Phenanthroline-Based Platinum(ii) Complex onto the Surface of a Carbon Nanotube via p–p Stacking

Abstract

Stacking of the metal complex [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(ii)]2+ (56MESS) onto the surface of two different fullerenes, a carbon nanotube (CNT), and a C60-buckyball was examined. The metal complex forms a supramolecular complex with multi-walled CNTs but not with buckyballs. Binding of 56MESS to the CNTs is highly efficient (90 %) but can be further stabilized by the addition of the surfactant, pluronic F-127, which resulted in a loading efficiency of 95 %. Molecular modelling shows that binding of 56MESS to the CNT is supported by the large surface area of the fullerene, whereas the more pronounced curvature and lack of a flat surface on the buckyball affects the ability of 56MESS to form bonds to its surface. The loading of 56MESS onto the CNT is via p–p stacking from the metal complex phenanthroline ligand and C–H···p bonding from the diaminocyclohexane ligand. 56MESS has 13 critical bonding points with the CNT, eight of which are p–p stacking bonds, but the metal complex forms only seven bonds with the buckyball. In addition, the loading of 56MESS onto the CNT results in a charge transfer of –0.111 eV; however, charge transfer is almost negligible for binding to the buckyball.

Related Organizations
Keywords

1115, 500, pluronic, phenanthroline, molecular modelling, buckyball, cancer, platinum, carbon nanotube

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
bronze