Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Mice with cardiac-specific sequestration of the β-subunit of the L-type calcium channel

Authors: Vladimir, Serikov; Ilona, Bodi; Sheryl E, Koch; James N, Muth; Gabor, Mikala; Sergey G, Martinov; Hannelore, Haase; +1 Authors

Mice with cardiac-specific sequestration of the β-subunit of the L-type calcium channel

Abstract

The beta subunit of the L-type voltage-dependent calcium channel modifies the properties of the channel complex by both allosteric modulation of the alpha1 subunit function and by chaperoning the translocation of the alpha1 subunit to the plasma membrane. The goal of this study was to investigate the functional effect of changing the in vivo stoichiometry between the alpha1 and beta subunits by creating a dominant negative expression system in a transgenic mouse model. The high affinity beta subunit-binding domain of the alpha1 subunit was overexpressed in a cardiac-specific manner to act as a beta subunit trap. We found that the predominant beta isoform was located primarily in the membrane bound fraction of heart protein, whereas the beta1 and beta3 were mostly cytosolic. There was a significant diminution of the amount of beta2 in the membrane fraction of the transgenic animals, resulting in a decrease in contractility of the heart and a decrease in L-type calcium current density in the myocyte. However, there were no distinguishable differences in beta1 and beta3 protein expression levels in the membrane bound fraction between transgenic and non-transgenic animals. Since the beta1 and beta3 isoforms only make up a small portion of the total beta subunit in the heart, slight changes in this fraction are not detectable using Western analysis. In contrast, beta1 and beta3 in skeletal muscle and brain, the predominant isoforms in these tissues, respectively, are membrane bound.

Keywords

Calcium Channels, L-Type, Myocardium, Blotting, Western, Cell Membrane, Mice, Transgenic, Blotting, Northern, Protein Structure, Tertiary, Electrophysiology, Alternative Splicing, Blotting, Southern, Mice, Cytosol, Animals, Protein Isoforms, Tissue Distribution, Genes, Dominant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average