Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Genetics
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Metabolic control and ageing

Authors: S. Michal Jazwinski;
Abstract

There appear to be multiple processes that are limiting for longevity and the associated mechanisms of ageing. Among these processes, metabolic control is coming to the forefront, because it has surfaced in studies in several model systems and because of its relevance to mammalian ageing. The genetic and molecular dissection of ageing in yeast points to mechanisms involving three aspects of metabolism. First, dysfunctional mitochondria signal many changes in nuclear gene expression that result in metabolic adjustments that extend life span. Second, manipulation of nutritional status can also increase longevity in a separate caloric-restriction pathway. Finally, protein synthesis is a third aspect, which depends on the transcriptional state of chromatin and the histone deacetylases that modulate it.

Keywords

Fungal Proteins, Aging, Longevity, Animals, Saccharomyces cerevisiae, Energy Intake, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Average
Top 10%
Top 10%