Powered by OpenAIRE graph

Elimination Reactions in the Medium-Chain Acyl-CoA Dehydrogenase: Bioactivation of Cytotoxic 4-Thiaalkanoic Acids

Authors: J F, Baker-Malcolm; L, Haeffner-Gormley; L, Wang; M W, Anders; C, Thorpe;

Elimination Reactions in the Medium-Chain Acyl-CoA Dehydrogenase: Bioactivation of Cytotoxic 4-Thiaalkanoic Acids

Abstract

A range of 4-thiaacyl-CoA derivatives has been synthesized to study the bioactivation of cytotoxic fatty acids by the mitochondrial medium-chain acyl-CoA dehydrogenase and the peroxisomal acyl-CoA oxidase. Both enzymes catalyze alpha-proton abstraction from normal acyl-CoA substrates with elimination of a beta-hydride equivalent to the FAD prosthetic group. In competition with this oxidation reaction, 4-thiaacyl-CoA thioesters undergo dehydrogenase-catalyzed beta-elimination, providing that the corresponding thiolates are sufficiently good leaving groups and can be accommodated by the active site of the enzyme. Thus, the dehydrogenase catalyzes the elimination of 2-mercaptobenzothiazole and 4-nitrothiophenolate from 4-(2-benzothiazole)-4-thiabutanoyl-CoA and 4-(4-nitrophenyl)-4-thiabutanoyl-CoA, respectively. However, the 2,4-dinitrophenyl-analogue appears too bulky and the unsubstituted thiophenyl-derivative is insufficiently activated for significant elimination. Molecular modeling shows that steric interference from the flavin ring dictates a syn rather than an anti elimination. Acryloyl-CoA, the other product of 4-thiaacyl-CoA elimination reactions, is not a significant inactivator of the medium-chain dehydrogenase. In contrast, the irreversible inactivation observed during beta-elimination using 5,6-dichloro-4-thia-5-hexenoyl-CoA (DCTH-CoA), 5,6-dichloro-7,7,7-trifluoro-4-thia-5-heptenoyl-CoA (DCTFTH-CoA), and 6-chloro-5,5,6-trifluoro-4-thiahexanoyl-CoA (CTFTH-CoA) is caused by release of cytotoxic thiolate products within the active site of the dehydrogenase. The double bond between C5 and C6 found in the vinylic analogues DCTH- and DCTFTH-CoA is not essential for enzyme inactivation, although CTFTH-CoA is a weaker inhibitor of the dehydrogenase. Mechanism-based inactivation with CTFTH-CoA requires elimination, is unaffected by exogenous nucleophiles, and is strongly protected by octanoyl-CoA. The peroxisomal acyl-CoA oxidase efficiently oxidizes 4-thiaacyl-CoA analogues, but is only rapidly inactivated by DCTFTH-CoA. The variable ratio of elimination to oxidation observed for DCTH-, DCTFTH-, and CTFTH-CoA may influence the metabolism of the corresponding cytotoxic alkanoic acids in vivo.

Related Organizations
Keywords

Hydrocarbons, Halogenated, Swine, Esters, Kidney, Acyl-CoA Dehydrogenase, Catalysis, Enzyme Activation, Acyl-CoA Dehydrogenases, Hydrocarbons, Chlorinated, Animals, Cattle, Propionates, Biotransformation, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%