Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Cardiovasc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Cardiovascular Medicine
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Genetics in Arterial Calcification: Lessons Learned From Rare Diseases

Authors: Yvonne, Nitschke; Frank, Rutsch;

Genetics in Arterial Calcification: Lessons Learned From Rare Diseases

Abstract

Arterial calcification significantly contributes to morbidity and mortality. Insight into the pathophysiological mechanisms contributing to arterial calcification has come from genetic studies on four rare monogenic disorders. The disease-causing molecular defects in generalized arterial calcification of infancy (GACI), pseudoxanthoma elasticum (PXE), calcification of joints and arteries (CALJA), and familial idiopathic basal ganglia calcification (IBGC) have been identified within recent years. Based on the similarities of GACI, PXE, CALJA, and IBGC, it can be speculated that the underlying disease genes-ENPP1, ABCC6, NT5E, and SLC20A2, respectively-drive a cohesive molecular pathophysiology system modulated by ATP metabolism, inorganic pyrophosphate, adenosine, and inorganic phosphate generation and functional activities.

Related Organizations
Keywords

Genotype, Phosphoric Diester Hydrolases, Sodium-Phosphate Cotransporter Proteins, Type III, Calcinosis, Neurodegenerative Diseases, Atherosclerosis, GPI-Linked Proteins, Basal Ganglia Diseases, Mutation, Humans, Multidrug Resistance-Associated Proteins, Pseudoxanthoma Elasticum, Pyrophosphatases, Vascular Calcification, 5'-Nucleotidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%