Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Epidemiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Epidemiology Biomarkers & Prevention
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

CYP1A2, GSTM1, andGSTT1Polymorphisms and Diet Effects on CYP1A2 Activity in a Crossover Feeding Trial

Authors: Sabrina, Peterson; Yvonne, Schwarz; Shuying S, Li; Lin, Li; Irena B, King; Chu, Chen; David L, Eaton; +2 Authors

CYP1A2, GSTM1, andGSTT1Polymorphisms and Diet Effects on CYP1A2 Activity in a Crossover Feeding Trial

Abstract

AbstractCytochrome P-450 1A2 (CYP1A2) is a biotransformation enzyme that activates several procarcinogens. CYP1A2 is induced by cruciferous and inhibited by apiaceous vegetable intake. Using a randomized, crossover feeding trial in humans, we investigated the dose effects of cruciferous vegetables and the effects of any interaction between cruciferous and apiaceous vegetables on CYP1A2 activity. We also investigated whether response varied by CYP1A2*1F, GSTM1, and GSTT1 genotypes (glutathione S-transferases that metabolize crucifer constituents) and whether CYP1A2 activity rebounds after apiaceous vegetables are removed from the diet. Participants (N = 73), recruited based on genotypes, consumed four diets for two weeks each: low-phytochemical diet (basal), basal plus single dose of cruciferous (1C), basal plus double dose of cruciferous (2C), and basal plus single dose of cruciferous and apiaceous vegetables (1C+A). CYP1A2 activity was determined by urine caffeine tests administered at baseline and the end of each feeding period. Compared with basal diet, the 1C diet increased CYP1A2 activity (P < 0.0001) and the 2C diet resulted in further increases (P < 0.0001), with men experiencing greater dose-response than women. The 1C+A diet decreased CYP1A2 activity compared with the 1C and 2C diets (P < 0.0001 for both). Although there was no overall effect of CYP1A2*1F or GSTM1-null/GSTT1-null genotypes or genotype-by-diet interactions, there were significant diet response differences within each genotype. Additionally, CYP1A2 activity recovered modestly one day after the removal of apiaceous vegetables. These results suggest complex interactions among dietary patterns, genetic variation, and modulation of biotransformation that may not be apparent in observational studies. (Cancer Epidemiol Biomarkers Prev 2009;18(11):3118–25)

Keywords

Adult, Male, Cross-Over Studies, Polymorphism, Genetic, Genotype, Prognosis, Polymerase Chain Reaction, Diet, Young Adult, Cytochrome P-450 CYP1A2, Risk Factors, Caffeine, Humans, Female, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
bronze