Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Slit1 is specifically expressed in the primary and secondary enamel knots during molar tooth cusp formation

Authors: Sigbjørn Løes; Keijo Luukko; Päivi Kettunen; Inger Hals Kvinnsland;

Slit1 is specifically expressed in the primary and secondary enamel knots during molar tooth cusp formation

Abstract

The shape and diversity of the mammalian molar teeth is suggested to be regulated by the primary and secondary enamel knots, which are putative epithelial signaling centers of the tooth. In search of novel molecules involved in tooth morphogenesis, we analyzed mRNA expression of Slit1, -2 and -3, earlier characterized as secreted signals needed for axonal pathfinding and their two receptors Robo1 and -2 (Roundabout1 and -2) in the developing mouse first molar. In situ hybridization analysis showed that Slit1 mRNAs were expressed in the primary enamel knot of the bud and cap stage tooth germ and later the expression continued in the secondary enamel knots of the late cap and bell stage tooth. In contrast, expression of Slit2 and -3 as well Robo1, and -2 was largely restricted to mesenchymal tissue components of the tooth until the bell stage. At the late bud stage, however, Robo1 transcripts were evident in the primary enamel knot, and at the cap stage a pronounced expression was noted in the middle of the tooth germ covering the primary enamel knot and dental papilla mesenchyme. During the bell stage, Robo1 and Slit2 expression became restricted to the dental epithelia, while Slit3 continued in the dental mesenchyme. Prior to birth, Robo1 and -2 were co-localized in the predontoblasts. These results indicate that Slits and Robos display distinct, developmentally regulated expression patterns during tooth morphogenesis. In addition, our results show that Slit1 is the second known gene specifically located in the primary and secondary enamel knots.

Related Organizations
Keywords

Embryology, Roundabout Proteins, Gene Expression Regulation, Developmental, Membrane Proteins, Tooth Germ, Nerve Tissue Proteins, Slit Homolog 2 Protein, Molar, Mice, Animals, Intercellular Signaling Peptides and Proteins, Odontogenesis, RNA, Messenger, Receptors, Immunologic, Dental Enamel, Dental Papilla, In Situ Hybridization, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
hybrid