Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Signature activities of 20S proteasome include degradation of the ubiquitin-tag with the protein under hypoxia

Authors: Sahu, Indrajit; Mali, Sachitanand M.; Sulkshane, Prasad; Rozenberg, Andrey; Xu, Cong; Morag, Roni; Sahoo, Manisha Priyadarsini; +8 Authors

Signature activities of 20S proteasome include degradation of the ubiquitin-tag with the protein under hypoxia

Abstract

AbstractCareful removal of unwanted proteins is necessary for cell survival. The primary constitutive intracellular protease is the 26S proteasome complex, often found in equilibrium with its free catalytic subcomplex– the 20S core particle. Protein degradation by 26S is tightly regulated by prior ubiquitination of substrates, whereas 20S is amenable to substrates with an unstructured segment. Differentiating their contributions to intracellular proteolysis is challenging due to their common catalytic sites. Here, by chemically synthesizing a synoptic set of homogenous ubiquitinated proteins, we ascribe signature features to 20S function and demonstrate a unique property: degrading the ubiquitin-tag along with the target protein. Cryo-EM confirms that a ubiquitinated substrate can induce asymmetric conformational changes to 20S. Mass-spectrometry of intracellular peptidome under hypoxia and in human failing heart identifies the signature properties of 20S in cells. Moreover, the ability of 20S proteasome to clear toxic proteins rapidly, contributes to better survival under these conditions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green