Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao genesisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
genesis
Article . 2000
versions View all 3 versions

Characterization of an amphioxus Wnt gene, AmphiWnt11, with possible roles in myogenesis and tail outgrowth

Authors: Michael Schubert; Michael Schubert; Nicholas D. Holland; Linda Z. Holland;

Characterization of an amphioxus Wnt gene, AmphiWnt11, with possible roles in myogenesis and tail outgrowth

Abstract

The full-length sequence and developmental expression of an amphioxus Wnt gene (AmphiWnt11) are described. A phylogenetic analysis of all known full-length Wnt11 sequences indicates that a gene duplication occurred at the base of the vertebrate Wnt11 clade. The developmental expression domains of AmphiWnt11 resemble those of Wnt11 homologs in vertebrates. The earliest detectable expression is transiently associated with the dorsal lip of the blastopore. At the neurula stage, AmphiWnt11 is expressed in myotomal muscle cells; however, AmphiWnt11 transcription is not associated with metameric pre-patterning prior to morphological segmentation. Finally, in amphioxus and the vertebrates, Wnt11 homologs are expressed in anteroventral ectoderm and in association with the tailbud and the tail fin. Thus, in amphioxus and lower vertebrates, the posterior expression of Wnt11 may be involved in tail fin outgrowth, and this ancient genetic program might have been co-opted at least in part for lateral appendage development during vertebrate evolution. genesis 27:1-5, 2000.

Keywords

Male, Tail, DNA, Complementary, Base Sequence, Muscles, Molecular Sequence Data, Gene Expression, Wnt Proteins, Chordata, Nonvertebrate, Animals, Humans, Female, Amino Acid Sequence, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%