Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2001 . Peer-reviewed
Data sources: Crossref
Science
Article . 2002
versions View all 2 versions

Central Role of the CNGA4 Channel Subunit in Ca 2+ -Calmodulin-Dependent Odor Adaptation

Authors: Randall R. Reed; Steven D. Munger; Frank Zufall; Andrew P. Lane; Haining Zhong; King Wai Yau; Trese Leinders-Zufall;

Central Role of the CNGA4 Channel Subunit in Ca 2+ -Calmodulin-Dependent Odor Adaptation

Abstract

Heteromultimeric cyclic nucleotide–gated (CNG) channels play a central role in the transduction of odorant signals and subsequent adaptation. The contributions of individual subunits to native channel function in olfactory receptor neurons remain unclear. Here, we show that the targeted deletion of the mouse CNGA4 gene, which encodes a modulatory CNG subunit, results in a defect in odorant-dependent adaptation. Channels in excised membrane patches from the CNGA4 null mouse exhibited slower Ca 2+ -calmodulin-mediated channel desensitization. Thus, the CNGA4 subunit accelerates the Ca 2+ -mediated negative feedback in olfactory signaling and allows rapid adaptation in this sensory system.

Keywords

Eucalyptol, Cyclic Nucleotide-Gated Cation Channels, Cyclohexanols, Adaptation, Physiological, Olfactory Bulb, Ion Channels, Electrophysiology, Mice, Inbred C57BL, Kinetics, Mice, Calmodulin, 1-Methyl-3-isobutylxanthine, Gene Targeting, Odorants, Cyclic AMP, Monoterpenes, Animals, Calcium, Calcium Signaling, Ion Channel Gating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 10%
bronze