Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2008
versions View all 3 versions

Role of NAD binding and catalytic residues in the C‐terminal binding protein corepressor

Authors: David N. Arnosti; Priya Mani-Telang; Geoffrey Williams; Montserrat Sutrias-Grau;

Role of NAD binding and catalytic residues in the C‐terminal binding protein corepressor

Abstract

CtBP corepressor proteins potentiate the activity of many metazoan transcriptional repressors. These proteins are homologous to prokaryotic D‐2‐hydroxyacid dehydrogenases, possessing an NAD/NADH binding fold and conserved active site residues. When expressed in Drosophila, a catalytic site mutant retains biological activity, however, we find that an NAD binding mutant lacks biological activity. The NAD mutant, similar to a dimerization mutant, is expressed at low levels, indicating that binding of NAD/NADH may affect CtBP stability. These data support the idea that the ancestral dehydrogenase activity is not required for CtBP function, and NAD binding may play a regulatory, rather than catalytic, role.

Related Organizations
Keywords

Binding Sites, DNA, Complementary, Transcriptional repression, Base Sequence, C-terminal binding protein, NAD, Recombinant Proteins, Animals, Genetically Modified, DNA-Binding Proteins, Repressor Proteins, Alcohol Oxidoreductases, Phenotype, Mutation, Animals, Drosophila Proteins, Drosophila, CtBP, Corepressor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
bronze