Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2023
Data sources: Datacite
versions View all 6 versions

Plasma membrane association and resistosome formation of plant helper immune receptors

Authors: Zaiqing Wang; Xiaoxiao Liu; Jie Yu; Shuining Yin; Wenjuan Cai; Nak Hyun Kim; Farid El Kasmi; +2 Authors

Plasma membrane association and resistosome formation of plant helper immune receptors

Abstract

AbstractIntracellular plant immune receptors, termed NLRs, respond to pathogen effectors delivered into plant cells. Activation of NLRs typically confers immunity. Sensor NLRs, involved in effector recognition, are either TIR-NLRs (TNLs) or CC-NLRs (CNLs). Helper NLRs, required for sensor NLR signaling, include CCR-NLRs (RNLs) and a special class of CNLs known as NRCs. Activated TNLs produce small molecules that induce an association between the EDS1/SAG101 heterodimer and the NRG1s helper RNLs. Auto active NRG1s oligomerize and form calcium signaling channels largely localized at the plasma membrane (PM). The molecular mechanisms of helper NLR PM association and effector induced NRG1 oligomerization are not well characterized. We find that both RNLs and NRCs require positively charged residues in the second and fourth helices of their CCRor CC domain for phospholipid binding and PM association before and after activation, despite conformational changes that accompany activation. We demonstrate that effector activation of TNLs induces NRG1 oligomerization at the PM and that the cytoplasmic pool of EDS1/SAG101 is critical for cell death function. EDS1/SAG101 cannot be detected in the oligomerized NRG1 resistosome, suggesting that additional unknown triggers might be required to induce the dissociation of EDS1/SAG101 from the previously described NRG1/EDS1/SAG101 heterotrimer before subsequent NRG1 oligomerization, or that the conformational changes resulting from NRG1 oligomerization abrogate the interface for EDS1/SAG101 association. Our data provide new observations regarding dynamic PM association during helper NLR activation and underpin an updated model for effector induced NRG1 resistosome formation.

Country
Germany
Keywords

Arabidopsis Proteins, Cell Membrane, Arabidopsis, 500, NLR Proteins, Biological Sciences, Plants, Plant Immunity, Receptors, Immunologic, Carboxylic Ester Hydrolases, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 1%
Green
hybrid