Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2009 . Peer-reviewed
Data sources: Crossref
Development
Article . 2009
versions View all 2 versions

Cux2functions downstream of Notch signaling to regulate dorsal interneuron formation in the spinal cord

Authors: Angelo, Iulianella; Madhulika, Sharma; Greg B, Vanden Heuvel; Paul A, Trainor;

Cux2functions downstream of Notch signaling to regulate dorsal interneuron formation in the spinal cord

Abstract

Obtaining the diversity of interneuron subtypes in their appropriate numbers requires the orchestrated integration of progenitor proliferation with the regulation of differentiation. Here we demonstrate through loss-of-function studies in mice that the Cut homeodomain transcription factor Cux2 (Cutl2) plays an important role in regulating the formation of dorsal spinal cord interneurons. Furthermore, we show that Notch regulates Cux2 expression. Although Notch signaling can be inhibitory to the expression of proneural genes, it is also required for interneuron formation during spinal cord development. Our findings suggest that Cux2 might mediate some of the effects of Notch signaling on interneuron formation. Together with the requirement for Cux2 in cell cycle progression, our work highlights the mechanistic complexity in balancing neural progenitor maintenance and differentiation during spinal cord neurogenesis.

Keywords

Homeodomain Proteins, Base Sequence, Neurogenesis, Cell Cycle, Genes, Homeobox, Gene Expression Regulation, Developmental, Mice, Transgenic, Mice, Mutant Strains, Embryo Culture Techniques, Mice, Spinal Cord, Interneurons, Basic Helix-Loop-Helix Transcription Factors, Animals, Receptor, Notch1, Embryonic Stem Cells, DNA Primers, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
bronze