Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 1996
versions View all 2 versions

Elevated alcohol consumption in null mutant mice lacking 5–HT1B serotonin receptors

Authors: Christina N. Lessov; Daniel J. Feller; John C. Crabbe; René Hen; Charlotte D. Wenger; Tamara J. Phillips; Gwen L. Schafer;

Elevated alcohol consumption in null mutant mice lacking 5–HT1B serotonin receptors

Abstract

Substantial evidence links alcohol drinking and serotonin (5-HT) functioning in animals. Lowered central 5-HT neurotransmission has been found in a subgroup of alcoholics, possibly those with more aggressive, assaultive tendencies. Several rodent studies have also suggested that intact 5-HT systems are important determinants of sensitivity and/or tolerance to ethanol-induced ataxia and hypothermia. Null mutant mice lacking the 5-HT1B receptor gene (5-HT1B-/-) have been developed that display enhanced aggression and altered 5-HT release in slice preparations from some, but not all, brain areas. We characterized these mice for sensitivity to several effects of ethanol. Mutant mice drank twice as much ethanol as wild-type mice, and voluntarily ingested solutions containing up to 20% ethanol in water. Their intake of food and water, and of sucrose, saccharin and quinine solutions, was normal. Mutants were less sensitive than wild-types on a test of ethanol-induced ataxia and, with repeated drug administration, tended to develop tolerance more slowly. In tests of ethanol withdrawal and metabolism, mutants and wild-type mice showed equivalent responses. Our results suggest that the 5-HT1B receptor participates in the regulation of ethanol drinking, and demonstrate that serotonergic manipulations lead to reduced responsiveness to certain ataxic effects of ethanol without affecting dependence.

Related Organizations
Keywords

Mice, Knockout, Alcohol Drinking, Ethanol, Substance Withdrawal Syndrome, Eating, Mice, Receptors, Serotonin, Receptor, Serotonin, 5-HT1B, Animals, Humans, Ataxia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    336
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
336
Top 10%
Top 1%
Top 1%