Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virology Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virology Journal
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virology Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virology Journal
Article . 2009
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virology Journal
Article . 2008
Data sources: DOAJ
versions View all 5 versions

Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1 ectodomain shedding

Authors: Illick Kerry A; Fair Joseph N; Branco Luis M; Illick Megan M; Matschiner Alex; Schoepp Randal; Garry Robert F; +1 Authors

Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1 ectodomain shedding

Abstract

Abstract Background Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV) glycoprotein 1 (GP1), and glycoprotein 2 (GP2); Immunization of non-human primates with viral vectors expressing the arenaviral glycoprotein complex (GPC) confers full protective immunity against a lethal challenge with LASV. Thus, the development of native or quasi native recombinant LASV GP1 and GP2 as soluble, uncoupled proteins will improve current diagnostics, treatment, and prevention of Lassa fever. To this end, mammalian expression systems were engineered for production and purification of secreted forms of soluble LASV GP1 and GP2 proteins. Results Determinants for mammalian cell expression of secreted uncoupled Lassa virus (LASV) glycoprotein 1 (GP1) and glycoprotein 2 (GP2) were established. Soluble GP1 was generated using either the native glycoprotein precursor (GPC) signal peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain was deleted, the intracellular domain (IC) was fused to the ectodomain, and the gene was co-expressed with a complete GP1 gene in cis; (2) the TM and IC domains were deleted and GP1 was co-expressed in cis; (3) expression of GP1 was driven by the native GPC SP. These data implicate GP1 as a chaperone for processing and shuttling GP2 to the cell surface. The soluble forms of GP1 and GP2 generated through these studies were secreted as homogeneously glycosylated proteins that contained high mannose glycans. Furthermore, observation of GP1 ectodomain shedding from cells expressing wild type LASV GPC represents a novel aspect of arenaviral glycoprotein expression. Conclusion These results implicate GP1 as a chaperone for the correct processing and shuttling of GP2 to the cell surface, and suggest that native GPC SP plays a role in this process. In the absence of GP1 and GPC SP the GP2 protein may be processed by an alternate pathway that produces heterogeneously glycosylated protein, or the polypeptide may not fully mature in the secretory cascade in mammalian cells. The expression constructs developed in these studies resulted in the generation and purification of soluble, uncoupled GP1 and GP2 proteins from mammalian cells with quasi-native properties. The observation of GP1 ectodomain shedding from cells expressing wild type LASV GPC establishes new correlates of disease progression and highlights potential opportunities for development of diagnostics targeting the early stages of Lassa fever.

Keywords

Gene Expression Regulation, Viral, Glycosylation, Research, Infectious and parasitic diseases, RC109-216, Cell Line, Infectious Diseases, Viral Envelope Proteins, Virology, Chlorocebus aethiops, Animals, Humans, Lassa virus, Vero Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green
gold