Retinoic Acid and GM-CSF Coordinately Induce Retinal Dehydrogenase 2 (RALDH2) Expression through Cooperation between the RAR/RXR Complex and Sp1 in Dendritic Cells
Retinoic Acid and GM-CSF Coordinately Induce Retinal Dehydrogenase 2 (RALDH2) Expression through Cooperation between the RAR/RXR Complex and Sp1 in Dendritic Cells
Retinoic acid (RA)-producing dendritic cells (DCs) play critical roles in gut immunity. Retinal dehydrogenase 2 (RALDH2) encoded by Aldh1a2 is a key enzyme for generating RA in DCs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) potently induces RALDH2 expression in DCs in an RA-dependent manner, and RA alone weakly induces the expression. However, how GM-CSF and RA induce RALDH2 expression remains unclear. Here, we show that GM-CSF-induced activation of the transcription factor Sp1 and RA-dependent signaling via the RA receptor (RAR)/retinoid X receptor (RXR) complex contribute to Aldh1a2 expression. The RAR antagonist LE540 and the Sp1 inhibitor mithramycin A inhibited GM-CSF-induced Aldh1a2 expression in fms-related tyrosine kinase 3 ligand-generated bone marrow-derived DCs (BM-DCs). ERK and p38 MAPK inhibitors suppressed GM-CSF-induced nuclear translocation of Sp1 and Aldh1a2 expression. Sp1 and the RARα/RXRα complex bound to GC-rich Sp1-binding sites and an RA response element (RARE) half-site, respectively, near the TATA box in the mouse Aldh1a2 promoter. The DNA sequences around these sites were highly conserved among different species. In the presence of RA, ectopic expression of RARα/RXRα and Sp1 synergistically enhanced Aldh1a2 promoter-reporter activity. GM-CSF did not significantly induce Aldh1a2 expression in plasmacytoid DCs, peritoneal macrophages, or T cells, and the Aldh1a2 promoter in these cells was mostly unmethylated. These results suggest that GM-CSF/RA-induced RALDH2 expression in DCs requires cooperative binding of Sp1 and the RAR/RXR complex to the Aldh1a2 promoter, and can be regulated by a DNA methylation-independent mechanism.
MAP Kinase Signaling System, Receptors, Retinoic Acid, Science, Molecular Sequence Data, Gene Expression Regulation, Enzymologic, Dibenzazepines, Chlorocebus aethiops, Animals, Promoter Regions, Genetic, Cells, Cultured, Base Sequence, Q, R, Granulocyte-Macrophage Colony-Stimulating Factor, Drug Synergism, Dendritic Cells, Plicamycin, DNA Methylation, Aldehyde Oxidoreductases, Mice, Inbred C57BL, COS Cells, Medicine, CpG Islands, Research Article, Protein Binding
MAP Kinase Signaling System, Receptors, Retinoic Acid, Science, Molecular Sequence Data, Gene Expression Regulation, Enzymologic, Dibenzazepines, Chlorocebus aethiops, Animals, Promoter Regions, Genetic, Cells, Cultured, Base Sequence, Q, R, Granulocyte-Macrophage Colony-Stimulating Factor, Drug Synergism, Dendritic Cells, Plicamycin, DNA Methylation, Aldehyde Oxidoreductases, Mice, Inbred C57BL, COS Cells, Medicine, CpG Islands, Research Article, Protein Binding
17 Research products, page 1 of 2
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
