Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2006
versions View all 4 versions

A Conserved Role for Drosophila Neuroglian and Human L1-CAM in Central-Synapse Formation

Authors: Godenschwege, Tanja A.; Kristiansen, Lars V.; Uthaman, Smitha B.; Hortsch, Michael; Murphey, Rodney K.;

A Conserved Role for Drosophila Neuroglian and Human L1-CAM in Central-Synapse Formation

Abstract

Drosophila Neuroglian (Nrg) and its vertebrate homolog L1-CAM are cell-adhesion molecules (CAM) that have been well studied in early developmental processes. Mutations in the human gene result in a broad spectrum of phenotypes (the CRASH-syndrome) that include devastating neurological disorders such as spasticity and mental retardation. Although the role of L1-CAMs in neurite extension and axon pathfinding has been extensively studied, much less is known about their role in synapse formation.We found that a single extracellular missense mutation in nrg(849) mutants disrupted the physiological function of a central synapse in Drosophila. The identified giant neuron in nrg(849) mutants made a synaptic terminal on the appropriate target, but ultrastructural analysis revealed in the synaptic terminal a dramatic microtubule reduction, which was likely to be the cause for disrupted active zones. Our results reveal that tyrosine phosphorylation of the intracellular ankyrin binding motif was reduced in mutants, and cell-autonomous rescue experiments demonstrated the indispensability of this tyrosine in giant-synapse formation. We also show that this function in giant-synapse formation was conserved in human L1-CAM but neither in human L1-CAM with a pathological missense mutation nor in two isoforms of the paralogs NrCAM and Neurofascin.We conclude that Nrg has a function in synapse formation by organizing microtubules in the synaptic terminal. This novel synaptic function is conserved in human L1-CAM but is not common to all L1-type proteins. Finally, our findings suggest that some aspects of L1-CAM-related neurological disorders in humans may result from a disruption in synapse formation rather than in axon pathfinding.

Keywords

Neurons, Agricultural and Biological Sciences(all), Genotype, Biochemistry, Genetics and Molecular Biology(all), Cell Adhesion Molecules, Neuronal, Amino Acid Motifs, Electric Conductivity, Mutation, Missense, Neural Cell Adhesion Molecule L1, Models, Biological, MOLNEURO, Structural Homology, Protein, Synapses, Animals, Drosophila Proteins, Humans, Drosophila, Amino Acid Sequence, Phosphorylation, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
hybrid