Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncotargetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2015
versions View all 2 versions

Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients

Authors: Dan, Wang; Ping, Lu; Hao, Zhang; Minna, Luo; Xin, Zhang; Xiaofei, Wei; Jiyue, Gao; +2 Authors

Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients

Abstract

Oct-4 and Nanog in regulating the epithelial-mesenchymal transition (EMT) and metastasis of breast cancer has not been clarified. We found that both Oct-4 and Nanog expression were significantly associated with tumor pathology and poor prognosis in 126 breast cancer patients. Characterization of CD44+CD24-Cancer stem cell(CSC) derived from breast cancer cells indicated that CSC rapidly formed mammospheres and had potent tumorigenicity in vivo. Furthermore, TGF-β up-regulated the expression of Oct-4, Nanog, N-cadherin, vimentin, Slug, and Snail, but down-regulated E-cadherin and cytokeratin 18 expression, demonstrating that CSC underwent EMT. Knockdown of both Oct-4 and Nanog expression inhibited spontaneous changes in the expression of EMT-related genes, while induction of both Oct-4 and Nanog over-expression enhanced spontaneous changes in the expression of EMT-related genes in CSC. However, perturbing alternation of Oct-4 and Nanog expression also modulated TGF-β-induced EMT-related gene expression in CSC. Induction of Oct-4 and Nanog over-expression enhanced the invasiveness of CSC, but knockdown of both Oct-4 and Nanog inhibited the migration of CSC in vitro. Our data suggest that both Oct-4 and Nanog may serve as biomarkers for evaluating breast cancer prognosis. Our findings indicate that Oct-4 and Nanog positively regulate the EMT process, contributing to breast cancer metastasis.

Related Organizations
Keywords

Homeodomain Proteins, Epithelial-Mesenchymal Transition, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Breast Neoplasms, Mice, SCID, Nanog Homeobox Protein, Cadherins, Real-Time Polymerase Chain Reaction, Immunoenzyme Techniques, Mice, Inbred C57BL, Mice, Cell Movement, Neoplastic Stem Cells, Animals, Humans, Female, RNA, Messenger, Octamer Transcription Factor-3, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 1%
Top 10%
Top 1%
gold