Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kardiologiiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kardiologiia
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kardiologiia
Article . 2021
versions View all 2 versions

Computed Tomography Coronary Angiography Possibilities in “High Risk” Plaque Identification in Patients with non-ST-Elevation Acute Coronary Syndrome: Comparison with Intravascular Ultrasound

Authors: I. N. Merkulova; M. A. Shariya; V. M. Mironov; M. S. Shabanova; T. N. Veselova; S. A. Gaman; N. A. Barysheva; +5 Authors

Computed Tomography Coronary Angiography Possibilities in “High Risk” Plaque Identification in Patients with non-ST-Elevation Acute Coronary Syndrome: Comparison with Intravascular Ultrasound

Abstract

Aim To evaluate structural characteristics of atherosclerotic plaques (ASP) by coronary computed tomography arteriography (CCTA) and intravascular ultrasound (IVUS).Material and methods This study included 37 patients with acute coronary syndrome (ACS). 64-detector-row CCTA, coronarography, and grayscale IVUS were performed prior to coronary stenting. The ASP length and burden, remodeling index (RI), and known CT signs of unstable ASP (presence of dot calcification, positive remodeling of the artery in the ASP area, irregular plaque contour, presence of a peripheral high-density ring and a low-density patch in the ASP). The ASP type and signs of rupture or thrombosis were determined by IVUS.Results The IVUS study revealed 45 unstable ASP (UASP), including 25 UASP with rupture and 20 thin-cap fibroatheromas (TCFA), and 13 stable ASP (SASP). No significant differences were found between distribution of TCFA and ASP with rupture among symptom-associated plaques (SAP, n=28) and non-symptom-associated plaques (NSAP, n=30). They were found in 82.1 and 73.3 % of cases, respectively (p>0.05), which indicated generalization of the ASP destabilization process in the coronary circulation. However, the incidence of mural thrombus was higher for SAP (53.5 and 16.6 % of ASP, respectively; p<0.001). There was no difference between UASP and SASP in the incidence of qualitative ASP characteristics or in values of quantitative ASP characteristics, including known signs of instability, except for the irregular contour, which was observed in 92.9 % of UASP and 46.1 % of SASP (p=0.0007), and patches with X-ray density ≤46 HU, which were detected in 83.3 % of UASP and 46.1 % of SASP (р=0.01). The presence of these CT criteria 11- and 7-fold increased the likelihood of unstable ASP (odd ratio (OR), 11.1 at 95 % confidence interval (CI), from 2.24 to 55.33 and OR, 7.0 at 95 % CI, from 5.63 to 8.37 for the former and the latter criterion, respectively).Conclusion According to IVUS data, two X-ray signs are most characteristic for UASP, the irregular contour and a patch with X-ray density ≤46 HU. The presence of these signs 11- and 7-fold, respectively, increases the likelihood of unstable ASP. 

Related Organizations
Keywords

Humans, Coronary Artery Disease, Acute Coronary Syndrome, Coronary Angiography, Tomography, X-Ray Computed, Coronary Vessels, Plaque, Atherosclerotic, Ultrasonography, Interventional

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid