Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacy ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Pharmacy and Bioallied Sciences
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Pharmacy and Bioallied Sciences
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Development of Hif1a Pharmacogenomic Mutation Models to Study Individual Variations in Drug Action for Tumor Hypoxia

An in Silico Approach
Authors: Vaisali Balasubramaniam; P K Krishnan Namboori;

Development of Hif1a Pharmacogenomic Mutation Models to Study Individual Variations in Drug Action for Tumor Hypoxia

Abstract

Objective: Tumor hypoxia, a predominant feature of solid tumor produces drug resistance that significantly impacts a patient's clinical outcomes. Hypoxia-inducible factor 1-alpha (HIF1α) is the major mutation involved in establishing the microenvironment. As a consequence of its involvement in pathways that enable rapid tumor growth, it creates resistance to chemotherapeutic treatments. The propensity of medications to demonstrate drug action often diverges according to the genetic composition. The aim of this study is therefore to examine the effect of population-dependent drug response variations using mutation models. Methods: Genetic variations distinctive to major super-populations were identified, and the mutated gene was acquired as a result of incorporating the variants. The mutated gene sequence was transcribed and translated to obtain the target amino acid sequence. To investigate the effects of mutations, protein models were developed using homology modeling. The target templates for the backbone structure were identified by characterization of primary and secondary protein structures. The modeled proteins were then validated for structural confirmation and flexibility. Potential models were used for interaction studies with hypoxia-specific molecules (tirapazamine, apaziquone, and ENMD) using docking analysis. To verify their stability under pre-defined dynamic conditions, the complexes were subjected to molecular dynamics simulation. Results: The current research models demonstrate with the pharmacogenomic-based mutation of HIF1α the impact of individual variants in altering the person-specific drug response under tumor hypoxic conditions. It also elucidates that the therapeutic effect is altered concerning population-dependent genetic changes in the individual. Conclusion: The study, therefore, asserts the need to set up a personalized drug design approach to enhance tumor hypoxia treatment efficacy.

Keywords

pharmacogenomics, tumor hypoxia, QD71-142, individual variation, drug response, molecular docking, mutation models, RS1-441, molecular dynamics simulation, Pharmacy and materia medica, Original Article, Analytical chemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold