Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system

Authors: Anna, Lasorella; Antonio, Iavarone;

The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system

Abstract

Id2 is a natural inhibitor of the basic helix–loop–helix transcription factors and the retinoblastoma tumor suppressor protein. Active Id2 prevents differentiation and promotes cell-cycle progression and tumorigenesis in the nervous system. A key event that regulates Id2 activity during differentiation is translocation from the nucleus to the cytoplasm. Here we show that the actin-associated protein enigma homolog (ENH) is a cytoplasmic retention factor for Id2. ENH contains three LIM domains, which bind to the helix–loop–helix domain of Id proteins in vitro and in vivo . ENH is up-regulated during neural differentiation, and its ectopic expression in neuroblastoma cells leads to translocation of Id2 from the nucleus to the cytoplasm, with consequent inactivation of transcriptional and cell-cycle-promoting functions of Id2. Conversely, silencing of ENH by RNA interference prevents cytoplasmic relocation of Id2 in neuroblastoma cells differentiated with retinoic acid. Finally, the differentiated neural crest-derived tumor ganglioneuroblastoma coexpresses Id2 and ENH in the cytoplasm of ganglionic cells. These data indicate that ENH contributes to differentiation of the nervous system through cytoplasmic sequestration of Id2. They also suggest that ENH is a restraining factor of the oncogenic activity of Id proteins in neural tumors.

Related Organizations
Keywords

Cytoplasm, Helix-Loop-Helix Motifs, Microfilament Proteins, Cell Differentiation, LIM Domain Proteins, Nervous System, Cell Line, Mice, Neuroblastoma, Protein Transport, Cell Transformation, Neoplastic, Cell Line, Tumor, Chlorocebus aethiops, Animals, Humans, RNA, Small Interfering, Adaptor Proteins, Signal Transducing, Cell Proliferation, Inhibitor of Differentiation Protein 2, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze