Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF-β1-Induced CTGF Expression in Keloid Fibroblasts

Authors: Lopes, Luciana B.; Furnish, Elizabeth J.; Komalavilas, Padmini; Flynn, Charles R.; Ashby, Patricia; Hansen, Adam; Ly, Daphne P.; +4 Authors

Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF-β1-Induced CTGF Expression in Keloid Fibroblasts

Abstract

A growing body of evidence suggests the involvement of connective tissue growth factor (CTGF) in the development and maintenance of fibrosis and excessive scarring. As the expression of this protein requires an intact actin cytoskeleton, disruption of the cytoskeleton represents an attractive strategy to decrease CTGF expression and, consequently, excessive scarring. The small heat-shock-related protein (HSP20), when phosphorylated by cyclic nucleotide signaling cascades, displaces phospho-cofilin from the 14-3-3 scaffolding protein leading to activation of cofilin as an actin-depolymerizing protein. In the present study, we evaluated the effect of AZX100, a phosphopeptide analogue of HSP20, on transforming growth factor-beta-1 (TGF-beta1)-induced CTGF and collagen expression in human keloid fibroblasts. We also examined the effect of AZX100 on scar formation in vivo in dermal wounds in a Siberian hamster model. AZX100 decreased the expression of CTGF and type I collagen induced by TGF-beta1, endothelin, and lysophosphatidic acid. Treatment with AZX100 decreased stress fiber formation and altered the morphology of human dermal keloid fibroblasts. In vivo, AZX100 significantly improved collagen organization in a Siberian hamster scarring model. Taken together, these results suggest the potential use of AZX100 as a strategy to prevent excessive scarring and fibrotic disorders.

Keywords

Phodopus, Endothelins, Connective Tissue Growth Factor, Cell Biology, Dermatology, Fibroblasts, Phosphoproteins, Biochemistry, Fibrosis, Collagen Type I, Heat-Shock Proteins, Small, Transforming Growth Factor beta1, 14-3-3 Proteins, Cricetinae, Keloid, Animals, Humans, HSP20 Heat-Shock Proteins, Lysophospholipids, Phosphorylation, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
hybrid