Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease

Authors: Paulusma, C.C.; Oude Elferink, R.P.J.;

The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease

Abstract

The maintenance of phospholipid asymmetry in membrane bilayers is a paradigm in cell biology. However, the mechanisms and proteins involved in phospholipid translocation are still poorly understood. Members of the type 4 subfamily of P-type ATPases have been implicated in the translocation of phospholipids from the outer to the inner leaflet of membrane bilayers. In humans, several inherited disorders have been identified which are associated with loci harboring type 4 P-type ATPase genes. Up to now, one inherited disorder, Byler disease or progressive familial intrahepatic cholestasis type 1 (PFIC1), has been directly linked to mutations in a type 4 P-type ATPase gene. How the absence of an aminophospholipid translocase activity relates to this severe disease is, however, still unclear. Studies in the yeast Saccharomyces cerevisiae have recently identified important roles for type 4 P-type ATPases in intracellular membrane- and protein-trafficking events. These processes require an (amino)phospholipid translocase activity to initiate budding or fusion of membrane vesicles from or with other membranes. The studies in yeast have greatly contributed to our cell biological insight in membrane dynamics and intracellular-trafficking events; if this knowledge can be translated to mammalian cells and organs, it will help to elucidate the molecular mechanisms which underlie severe inherited human diseases such as Byler disease.

Related Organizations
Keywords

Adenosine Triphosphatases, Byler disease, Genetic Diseases, Inborn, Membrane Proteins, Type 4 P-type ATPase, Cholestasis, Intrahepatic, Models, Biological, Aminophospholipid translocase, Phospholipid asymmetry, Molecular Medicine, Humans, Yeast Saccharomyces cerevisiae, Phospholipid Transfer Proteins, Membrane- and protein-trafficking, Molecular Biology, Phospholipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 10%
hybrid