iDRP-PseAAC: Identification of DNA Replication Proteins Using General PseAAC and Position Dependent Features
iDRP-PseAAC: Identification of DNA Replication Proteins Using General PseAAC and Position Dependent Features
DNA replication is one of the specific processes to be considered in all the living organisms, specifically eukaryotes. The prevalence of DNA replication is significant for an evolutionary transition at the beginning of life. DNA replication proteins are those proteins which support the process of replication and are also reported to be important in drug design and discovery. This information depicts that DNA replication proteins have a very important role in human bodies, however, to study their mechanism, their identification is necessary. Thus, it is a very important task but, in any case, an experimental identification is time-consuming, highly-costly and laborious. To cope with this issue, a computational methodology is required for prediction of these proteins, however, no prior method exists. This study comprehends the construction of novel prediction model to serve the proposed purpose. The prediction model is developed based on the artificial neural network by integrating the position relative features and sequence statistical moments in PseAAC for training neural networks. Highest overall accuracy has been achieved through tenfold cross-validation and Jackknife testing that was computed to be 96.22% and 98.56%, respectively. Our astonishing experimental results demonstrated that the proposed predictor surpass the existing models that can be served as a time and cost-effective stratagem for designing novel drugs to strike the contemporary bacterial infection.
- University of the Punjab Pakistan
- University of Management and Technology Pakistan
- University of Management and Technology, Lahore Pakistan
Article
Article
1 Research products, page 1 of 1
- 1998IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
