Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression

Authors: Tomoyuki, Yamaguchi; Ayumi, Kishi; Motonao, Osaki; Hiromasa, Morikawa; Paz, Prieto-Martin; Kajsa, Wing; Takashi, Saito; +1 Authors

Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression

Abstract

Significance Naturally occurring regulatory T (Treg) cells suppress aberrant or excessive immune responses, thereby maintaining immune self-tolerance and homeostasis. This study shows that a combination of IL-2 repression, CTLA-4 expression, and antigenic stimulation is able to convert conventional T cells to potently immunosuppressive Treg-like cells, which are able to deprive IL-2 and CD28 signal from other T cells. Like natural Treg cells, they acquire a self-skewed T-cell receptor repertoire in the course of their thymic development, enabling them to control autoimmune responses effectively. This Treg construction by targeting IL-2 and CTLA-4 in conventional T cells is a novel way of immune suppression.

Keywords

Analysis of Variance, Immunity, Cellular, Mice, Inbred BALB C, Autoimmunity, Cell Differentiation, Enzyme-Linked Immunosorbent Assay, Mice, Transgenic, Dendritic Cells, Flow Cytometry, Inflammatory Bowel Diseases, Binding, Competitive, T-Lymphocytes, Regulatory, Mice, CD28 Antigens, Microscopy, Fluorescence, Animals, Interleukin-2, CTLA-4 Antigen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 1%
bronze