Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase
Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase
Heme oxygenase (HO) degrades heme in concert with NADPH cytochrome P450 reductase (CPR) which donates electrons to the reaction. Earlier studies reveal the importance of the hydrophobic carboxy-terminus of HO-1 for anchorage to the endoplasmic reticulum (ER) which facilitates the interaction with CPR. In addition, HO-1 has been shown to undergo regulated intramembrane proteolysis of the carboxy-terminus during hypoxia and subsequent translocation to the nucleus. Translocated nuclear HO-1 was demonstrated to alter binding of transcription factors and to alter gene expression. Little is known about the homologous membrane anchor of the HO-2 isoform. The current work is the first systematic analysis in a eukaryotic system that demonstrates the crucial role of the membrane anchor of HO-2 for localization at the endoplasmic reticulum, oligomerization and interaction with CPR. We show that although the carboxy-terminal deletion mutant of HO-2 is found in the nucleus, translocation of HO-2 to the nucleus does not occur under conditions of hypoxia. Thus, we demonstrate that proteolytic regulation and nuclear translocation under hypoxic conditions is specific for HO-1. In addition we show for the first time that CPR prevents this translocation and promotes oligomerization of HO-1. Based on these findings, CPR may modulate gene expression via the amount of nuclear HO-1. This is of particular relevance as CPR is a highly polymorphic gene and deficiency syndromes of CPR have been described in humans.
Cell Nucleus, Science, Q, R, Endoplasmic Reticulum, Cell Hypoxia, Protein Transport, HEK293 Cells, Heme Oxygenase (Decyclizing), Mutation, Fluorescence Resonance Energy Transfer, Medicine, Animals, Humans, Protein Isoforms, Protein Multimerization, Heme Oxygenase-1, Research Article, NADPH-Ferrihemoprotein Reductase
Cell Nucleus, Science, Q, R, Endoplasmic Reticulum, Cell Hypoxia, Protein Transport, HEK293 Cells, Heme Oxygenase (Decyclizing), Mutation, Fluorescence Resonance Energy Transfer, Medicine, Animals, Humans, Protein Isoforms, Protein Multimerization, Heme Oxygenase-1, Research Article, NADPH-Ferrihemoprotein Reductase
21 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
