Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Unique Amino-terminal Region of the PDE4D5 cAMP Phosphodiesterase Isoform Confers Preferential Interaction with β-Arrestins

Authors: Angela McCahill; Graeme B. Bolger; Theresa McSorley; Elaine Huston; Miles D. Houslay; George S. Baillie; York-Fong Cheung;

The Unique Amino-terminal Region of the PDE4D5 cAMP Phosphodiesterase Isoform Confers Preferential Interaction with β-Arrestins

Abstract

Isoproterenol challenge of Hek-B2 cells causes a transient recruitment of the endogenous PDE4D isoforms found in these cells, namely PDE4D3 and PDE4D5, to the membrane fraction. PDE4D5 provides around 80% of the total PDE4D protein so recruited, although it only comprises about 40% of the total PDE4D protein in Hek-B2 cells. PDE4D5 provides about 80% of the total PDE4D protein found associated with beta-arrestins immunopurified from Hek-B2, COS1, and A549 cells as well as cardiac myocytes, whereas its overall level in these cells is between 15 and 50% of the total PDE4D protein. Truncation analyses indicate that two sites in PDE4D5 are involved in mediating its interaction with beta-arrestins, one associated with the common PDE4 catalytic region and the other located within its unique amino-terminal region. Truncation analyses indicate that two sites in beta-arrestin 2 are involved in mediating its interaction with PDE4D5, one associated with its extreme amino-terminal region and the other located within the carboxyl-terminal domain of the protein. We suggest that the unique amino-terminal region of PDE4D5 allows it to preferentially interact with beta-arrestins. This specificity appears likely to account for the preferential recruitment of PDE4D5, compared with PDE4D3, to membranes of Hek-B2 cells and cardiac myocytes upon challenge with isoproterenol.

Related Organizations
Keywords

Arrestins, Phosphoric Diester Hydrolases, Molecular Sequence Data, beta-Arrestin 2, Cyclic Nucleotide Phosphodiesterases, Type 3, Cell Line, Cyclic Nucleotide Phosphodiesterases, Type 4, Isoenzymes, Humans, Amino Acid Sequence, beta-Arrestins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
gold