NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation
NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation
Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression. A few rotaviruses encode an NSP1 that inhibits the NF-κB pathway by targeting β-TrCP, a protein required for IκB degradation and NF-κB activation. Available evidence suggests that these NSP1 properties involve proteosomal degradation of target proteins. We show here that NSP1 from several human rotaviruses and porcine rotavirus CRW-8 inhibits the NF-κB pathway, but cannot degrade IRF3. Furthermore, β-TrCP levels were much reduced in cells infected with these rotaviruses. This provides strong evidence that β-TrCP degradation is required for NF-κB pathway inhibition by NSP1 and demonstrates the relevance of β-TrCP degradation to rotavirus infection. C-terminal regions of NSP1, including a serine-containing motif resembling the β-TrCP recognition motif of IκB, were required for NF-κB inhibition. CRW-8 infection of HT-29 intestinal epithelial cells induced significant levels of IFN-β and CCL5 but not IL-8. This contrasts with monkey rotavirus SA11-4F, whose NSP1 inhibits IRF3 but not NF-κB. Substantial amounts of IL-8 but not IFN-β or CCL5 were secreted from HT-29 cells infected with SA11-4F. Our results show that human rotaviruses commonly inhibit the NF-κB pathway by degrading β-TrCP and thus stabilizing IκB. They suggest that NSP1 plays an important role during human rotavirus infection by inhibiting the expression of NF-κB-dependent cytokines, such as IL-8.
- University of Melbourne Australia
Rotavirus, 570, Swine, NF-kappa B, 610, Epithelial Cells, Viral Nonstructural Proteins, beta-Transducin Repeat-Containing Proteins, Cell Line, Proteolysis, Animals, Humans, Immune Evasion
Rotavirus, 570, Swine, NF-kappa B, 610, Epithelial Cells, Viral Nonstructural Proteins, beta-Transducin Repeat-Containing Proteins, Cell Line, Proteolysis, Animals, Humans, Immune Evasion
12 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
