Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration

Authors: Yuki, Miyamoto; Tomohiro, Torii; Natsuki, Yamamori; Takahiro, Eguchi; Motoshi, Nagao; Kazuaki, Nakamura; Akito, Tanoue; +1 Authors

Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration

Abstract

During development of the peripheral nervous system (PNS), Schwann cells migrate along axons, wrapping individual axons to form a myelin sheath. This process is all mediated by the intercellular signaling between neurons and Schwann cells. As yet, little is known about the intracellular signaling mechanisms controlling these morphological changes including Schwann cell migration. We previously showed that c-Jun N-terminal kinase (JNK) plays a key role in Schwann cell migration before the initiation of myelination. Here we show that JNK, acting through phosphorylation of the cytoskeletal protein paxillin, regulates Schwann cell migration and that it mediates dorsal root ganglion (DRG) neuronal conditioned medium (CM). Phosphorylation of paxillin at the Ser-178 position, the JNK phosphorylation site, is observed following stimulation with neuronal CM. Phosphorylation is also detected as a result of stimulation with each of growth factors contained in neuronal CM. Knockdown of paxillin with the specific small interfering RNA (siRNA) inhibits migration. The reintroduction of paxillin reverses siRNA-mediated inhibition of migration, whereas paxillin harboring the Ser-178-to-Ala mutation fails to reverse it. In addition, while JNK binds to the N-terminal region (called LD1), the deletion of LD1 blocks migration. Together, JNK binds and phosphorylates paxillin to regulate Schwann cell migration, illustrating that paxillin provides one of the convergent points of intracellular signaling pathways controlling Schwann cell migration.

Keywords

Male, Neurons, JNK Mitogen-Activated Protein Kinases, Recombinant Proteins, Rats, Rats, Sprague-Dawley, Mice, HEK293 Cells, Amino Acid Substitution, Cell Movement, Animals, Humans, Female, RNA Interference, Schwann Cells, Paxillin, Phosphorylation, RNA, Small Interfering, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%