Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.1101/2021.0...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions

The efficacy of a ketogenic diet in preclinical models of IDH wild-type and IDH mutant glioma

Authors: Rodrigo Javier; Wenxia Wang; Michael Drumm; Kathleen McCortney; Jann N. Sarkaria; Craig Horbinski;

The efficacy of a ketogenic diet in preclinical models of IDH wild-type and IDH mutant glioma

Abstract

ABSTRACTInfiltrative gliomas are the most common neoplasms arising in the brain, and remain largely incurable despite decades of research. A subset of these gliomas contains mutations in isocitrate dehydrogenase 1 (IDH1) or, less commonly, IDH2 (together called “IDHmut”). These mutations alter cellular biochemistry, and IDHmut gliomas are generally less aggressive than IDH wild-type (IDHwt) gliomas. Some preclinical studies and clinical trials have suggested that a ketogenic diet (KD), characterized by low-carbohydrate and high-fat content, may be beneficial in slowing glioma progression. However, not all studies have shown promising results, and to date, no study has addressed whether IDHmut gliomas might be more sensitive to KD. The aim of the current study was to compare the effects of KD in preclinical models of IDHwt versus IDHmut gliomas. In vitro, simulating KD by treatment with the ketone body β-hydroxybutyrate had no effect on the proliferation of patient-derived IDHwt or IDHmut glioma cells. Likewise, a cycling KD, wherein mice alternated between KD and a standard diet (SD), had no effect on the in vivo growth of patient-derived IDHwt or IDHmut gliomas, even though the cycling KD did result in persistently elevated circulating ketones. Furthermore, KD conferred no survival benefit in mice engrafted with Sleeping-Beauty transposase-engineered IDHmut glioma. These data suggest that neither IDHwt nor IDHmut gliomas are particularly responsive to KD.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average