Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetes Carearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article . 2010 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Variation at the NFATC2 Locus Increases the Risk of Thiazolidinedione-Induced Edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) Study

Authors: Bailey, Swneke D.; Xie, Changchun; Do, Ron; Montpetit, Alexandre; Diaz, Rafael; Mohan, Viswanathan; Keavney, Bernard; +4 Authors

Variation at the NFATC2 Locus Increases the Risk of Thiazolidinedione-Induced Edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) Study

Abstract

OBJECTIVE Thiazolidinediones are used to treat type 2 diabetes. Their use has been associated with peripheral edema and congestive heart failure—outcomes that may have a genetic etiology. RESEARCH DESIGN AND METHODS We genotyped 4,197 participants of the multiethnic DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) trial with a 50k single nucleotide polymorphisms (SNP) array, which captures ∼2000 cardiovascular, inflammatory, and metabolic genes. We tested 32,088 SNPs for an association with edema among Europeans who received rosiglitazone (n = 965). RESULTS One SNP, rs6123045, in NFATC2 was significantly associated with edema (odds ratio 1.89 [95% CI 1.47–2.42]; P = 5.32 × 10−7, corrected P = 0.017). Homozygous individuals had the highest edema rate (hazard ratio 2.89, P = 4.22 × 10−4) when compared with individuals homozygous for the protective allele, with heterozygous individuals having an intermediate risk. The interaction between the SNP and rosiglitazone for edema was significant (P = 7.68 × 10−3). Six SNPs in NFATC2 were significant in both Europeans and Latin Americans (P < 0.05). CONCLUSIONS Genetic variation at the NFATC2 locus contributes to edema among individuals who receive rosiglitazone.

Country
United Kingdom
Keywords

Male, NFATC Transcription Factors, Polymorphism, Single Nucleotide, Rosiglitazone, Diabetes Mellitus, Type 2, Ramipril, Edema, Humans, Hypoglycemic Agents, Female, Thiazolidinediones, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
Green
hybrid