Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stem Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article
Data sources: UnpayWall
versions View all 2 versions

Brg1 is required for stem cell maintenance in the murine intestinal epithelium in a tissue-specific manner

Authors: Alan Richard Clarke; Boris Shorning; Madeleine Young; Kirsty Richardson; Pierre Chambon; Thierry Jarde; Aliaksei Holik; +2 Authors

Brg1 is required for stem cell maintenance in the murine intestinal epithelium in a tissue-specific manner

Abstract

Abstract Brg1 is a chromatin remodeling factor involved in mediation of a plethora of signaling pathways leading to its participation in various physiological processes both during development and in adult tissues. Among other signaling pathways, the Wnt pathway has been proposed to require Brg1 for transactivation of its target genes. Given the pivotal role of the Wnt pathway in the maintenance of normal intestinal homeostasis, we aimed to investigate the effects of Brg1 loss on the intestinal physiology. To this end, we deleted Brg1 in the murine small and large intestinal epithelia using a range of transgenic approaches. Pan-epithelial loss of Brg1 in the small intestine resulted in crypt ablation, while partial Brg1 deficiency led to gradual repopulation of the intestinal mucosa with wild-type cells. In contrast, Brg1 loss in the large intestinal epithelium was compensated by upregulation of Brm. We propose that while Brg1 is dispensable for the survival and function of the progenitor and differentiated cells in the murine intestinal epithelium, it is essential for the maintenance of the stem cell population in a tissue-specific manner.

Keywords

Mice, Stem Cells, DNA Helicases, Animals, Nuclear Proteins, Cell Differentiation, Intestinal Mucosa, Microarray Analysis, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
hybrid