Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Positive and Negative Regulation of the γ-Secretase Activity by Nicastrin in a Murine Model

Authors: Jinhe, Li; Gregory J, Fici; Chai-An, Mao; Richard L, Myers; Rongqing, Shuang; Gregory P, Donoho; Adele M, Pauley; +5 Authors

Positive and Negative Regulation of the γ-Secretase Activity by Nicastrin in a Murine Model

Abstract

Nicastrin is a component of the gamma-secretase complex that has been shown to adhere to presenilin-1 (PS1), Notch, and APP. Here we demonstrate that Nicastrin-deficient mice showed a phenotype that is indistinguishable from PS1/PS2 double knock-out mice, whereas heterozygotes were healthy and viable. Fibroblasts derived from Nicastrin-deficient embryos were unable to generate amyloid beta-peptide and failed to release the intracellular domain of APP- or Notch1-Gal4-VP16 fusion proteins. Additionally, C- and N-terminal fragments of PS1 and the C-terminal fragments of PS2 were not detectable in Nicastrin-null fibroblasts, whereas full-length PS1 accumulated in null fibroblasts, indicating that Nicastrin is required for the endoproteolytic processing of presenilins. Interestingly, cells derived from Nicastrin heterozygotes produced relatively higher levels of amyloid beta-peptide whether the source was endogenous mouse or transfected human APP. These data demonstrate that Nicastrin is essential for the gamma-secretase cleavage of APP and Notch in mammalian cells and that Nicastrin has both positive and negative functions in the regulation of gamma-secretase activity.

Related Organizations
Keywords

Heterozygote, DNA, Complementary, Membrane Glycoproteins, Genotype, Cell Membrane, Green Fluorescent Proteins, Membrane Proteins, Fibroblasts, Gene Expression Regulation, Enzymologic, Adenoviridae, Luminescent Proteins, Genes, Reporter, Culture Media, Conditioned, Endopeptidases, Animals, Aspartic Acid Endopeptidases, Humans, Amyloid Precursor Protein Secretases, Luciferases, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
gold