Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis

Authors: Jesús Page; Alberto Viera; Julio S. Rufas; José A. Suja; William C. Earnshaw; Mar Carmena; María Teresa Parra; +1 Authors

Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis

Abstract

INCENP and aurora-B kinase are two chromosomal passenger proteins that are thought to play key roles in coordinating chromosome segregation with cytokinesis in somatic cells. Here we have analyzed their subcellular distribution, and that of phosphorylated histone H3, and the timing of their relative appearance in mouse spermatocytes during both meiotic divisions. Our results show that in mitotic spermatogonial cells, INCENP and aurora-B show the same pattern of distribution as they do in cultured somatic cells. INCENP labels the synaptonemal complex central element from zygotene up to late pachytene when it begins to relocalize to heterochromatic chromocentres. Aurora-B first appears at chromocentres in late diplotene before the initial phosphorylation of histone H3. INCENP and aurora-B concentrate at centromeres during diakinesis and appear during metaphase I as T-shaped signals at their inner domains, just below associated sister kinetochores. During late anaphase I both proteins relocalize to the spindle midzone. Both proteins colocalize at a connecting strand traversing the centromere region and joining sister kinetochores, in metaphase II centromeres. This strand disappears at the metaphase II/anaphase II transition and relocalizes to the spindle midzone. We discuss the complex dynamic relocalization of the chromosomal passenger complex during prophase I. Additionally, we suggest that this complex may regulate sister-chromatid centromere cohesion during both meiotic divisions.

Related Organizations
Keywords

Male, Chromosomal Proteins, Non-Histone, Centromere, Immunoblotting, 3T3 Cells, Protein Serine-Threonine Kinases, Prophase, Histones, Meiosis, Mice, Aurora Kinases, Heterochromatin, Animals, Aurora Kinase B, Humans, Phosphorylation, Anaphase, Kinetochores, Metaphase, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
hybrid