Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Evolutionary constraint on Otx2 neuroectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost

Authors: Daisuke, Kurokawa; Yusuke, Sakurai; Ai, Inoue; Rika, Nakayama; Nobuyoshi, Takasaki; Yoko, Suda; Tsutomu, Miyake; +2 Authors

Evolutionary constraint on Otx2 neuroectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost

Abstract

Otx2 is a paired type homeobox gene that plays essential roles in each step and site of head development in vertebrates. In the mouse, Otx2 expression in the anterior neuroectoderm is regulated primarily by two distinct enhancers: anterior neuroectoderm (AN) and forebrain/midbrain (FM) enhancers at 92 kb and 75 kb 5′of the Otx2 locus, respectively. The AN enhancer has activity in the entire anterior neuroectoderm at headfold and early somite stages, whereas the FM enhancer is subsequently active in the future caudal forebrain and midbrain ectoderm. In tetrapods, both AN and FM enhancers are conserved, whereas the AN region is missing in teleosts, despite overt Otx2 expression in the anterior neuroectoderm. Here, we show that zebrafish and fugu FM regions drive expression not only in the forebrain and midbrain but also in the anterior neuroectoderm at headfold stage. The analysis of coelacanth and skate genomic Otx2 orthologues suggests that the utilization of the two enhancers, AN and FM, is an ancestral condition. In contrast, the AN enhancer has been specifically lost in the teleost lineage with a compensatory establishment of AN activity within the FM enhancer. Furthermore, the AN activity in the fish FM enhancer was established by recruiting upstream factors different from those that direct the tetrapod AN enhancer, yet zebrafish FM enhancer is active in both mouse and zebrafish anterior neuroectoderm at the headfold stage.

Keywords

Embryo, Nonmammalian, Otx Transcription Factors, Base Sequence, Molecular Sequence Data, Brain, Embryo, Mammalian, Takifugu, Evolution, Molecular, Mice, Enhancer Elements, Genetic, Ectoderm, Vertebrates, Morphogenesis, Animals, Cloning, Molecular, In Situ Hybridization, Phylogeny, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
bronze