Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1996
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 1995
Data sources: IRIS Cnr
versions View all 3 versions

A Comparative Transcriptional Map of a Region of 250 kb on the Human and Mouse X Chromosome between the G6PD and the FLN1 Genes

Authors: Rivella S; Tamanini F; Bione S; Mancini M; Herman G; Chatterjee A; Maestrini E; +1 Authors

A Comparative Transcriptional Map of a Region of 250 kb on the Human and Mouse X Chromosome between the G6PD and the FLN1 Genes

Abstract

The transcriptional organization of the region of the mouse X chromosome between the G6pd and the Fln1 genes was studied in detail, and it was compared with the syntenic region of the human chromosome. A cosmid contig of 250 kb was constructed by screening mouse cosmid libraries with probes for human genes and with whole cosmids. Overlapping cosmids were aligned by comparing EcoRI and rare-cutter restriction enzyme digestions. The gene order and the orientation of transcription were determined by hybridization with fragments from the 5' and 3' moieties of each cDNA. Our work demonstrates that all of the new genes identified in human are present in the mouse. The size of the region, 250 kb, is also very similar, as are gene order and gene organization: the transcriptional organization in "domains" described in human is found to be identical in the mouse. The major difference detected is the much lower content in rare-cutter restriction sites, which is related to the lower G+C and CpG content of mouse DNA. The very high conservation that we have described suggests that a potent selective pressure has contributed to such conservation of gene organization.

Keywords

X-chromosome, X Chromosome, Base Sequence, Transcription, Genetic, Filamins, Microfilament Proteins, Molecular Sequence Data, Chromosome Mapping, DNA, Glucosephosphate Dehydrogenase, human-mouse, Cosmids, Mice, Contractile Proteins, Animals, Humans, Cloning, Molecular, G6PD

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
gold