Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Nuclear aggregation of huntingtin is not prevented by deletion of chaperone Hsp104

Authors: Shihua Li; Jeoffrey J Levine; Xiao-Jiang Li; Fengli Cao;

Nuclear aggregation of huntingtin is not prevented by deletion of chaperone Hsp104

Abstract

Polyglutamine expansion causes the disease proteins to aggregate, resulting in stable insoluble aggregates in the nucleus. The in vitro aggregation and cellular toxicity of polyglutamine proteins are reduced by chaperone heat shock proteins (Hsp). In polyglutamine disease animal models, however, polyglutamine inclusions remain in the nucleus despite the suppression of neurodegeneration by Hsp. Studies using yeast genetic approach revealed that the balance of Hsp is important for regulating protein aggregation in the cytoplasm of yeast cells. Here we report that N-terminal fragments of huntingtin with an expanded polyglutamine tract form aggregates only in the cytoplasm of yeast cells and, when tagged with nuclear localization sequences (NLS), are able to aggregate in the nucleus. Deletion of the Hsp104 gene prevents the aggregation of huntingtin in the cytoplasm but is unable to eliminate the aggregation of NLS-tagged huntingtin in the nucleus. The inhibitory effect of Hsp104 deletion on the cytoplasmic aggregation of huntingtin only occurs in viable yeast cells, as aggregates can be formed in Hsp104 deletion cells that have been frozen for 72 h. Fresh cytosolic extracts of the Hsp104 deletion strain inhibit the aggregation of huntingtin in vitro, suggesting that the deletion of Hsp104 may alter the activities of other cytoplasmic factors to inhibit polyglutamine aggregation in the cytoplasm. We propose that the regulatory effects of chaperones may mainly be restricted to the cytoplasm and have much less influence on polyglutamine-containing aggregates in the nucleus.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Saccharomyces cerevisiae Proteins, Green Fluorescent Proteins, Nuclear Localization Signals, Nuclear Proteins, Nerve Tissue Proteins, Chaperone, Yeast, Aggregation, Luminescent Proteins, Yeasts, Molecular Medicine, Huntingtin, Polyglutamine, Molecular Biology, Gene Deletion, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average
hybrid