Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
UNC Dataverse
Article . 2008
Data sources: Datacite
FEBS Letters
Article . 2008
versions View all 4 versions

Modulation of nucleobindin‐1 and nucleobindin‐2 by caspases

Authors: Valencia, C. Alexander; Cotten, Steven W.; Duan, Jinzhu; Liu, Rihe;

Modulation of nucleobindin‐1 and nucleobindin‐2 by caspases

Abstract

Nucleobindin‐1 (NUCB1) and nucleobindin‐2 (NUCB2) are multifunctional proteins that interact with Ca2+, nucleic acids and various regulatory proteins in different signaling pathways. So far, our understanding of the regulation of the biological functions of nucleobindins remains limited. In our proteome‐wide selection for downstream caspase substrates, both NUCB1 and NUCB2 are found to be the downstream substrates of caspases. We report here the detailed analyses of the cleavage of nucleobindins by caspases. Significantly, the caspase cleavage sites are located exactly at one of the Ca2+‐binding EF‐hand motifs. Our results suggest that the functions of nucleobindins could be modulated by caspase‐mediated cleavage in apoptosis.

Keywords

Sequence Homology, Amino Acid, Hydrolysis, Calcium-Binding Proteins, Molecular Sequence Data, Nucleobindin-2 (NUCB2), Nerve Tissue Proteins, Caspase substrates, Nucleobindin-1 (NUCB1), Cleavage of functional domain, Catalysis, Ca2+-binding proteins, DNA-Binding Proteins, Caspases, EF-hand motif, Animals, Humans, Nucleobindins, Amino Acid Sequence, Calcium Signaling, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze