Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Reproductionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reproduction
Article
Data sources: UnpayWall
Reproduction
Article . 2005 . Peer-reviewed
Data sources: Crossref
Reproduction
Article . 2006
versions View all 2 versions

Expression profile of protein kinase C isozymes in preimplantation mouse development

Authors: Hesam, Dehghani; Ann C, Hahnel;

Expression profile of protein kinase C isozymes in preimplantation mouse development

Abstract

In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (α, βI, βII, γ, δ, ε, η, 𝛉, ζ, ι/λ) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Microscopy, Confocal, Embryonic Development, Immunohistochemistry, Morula, Isoenzymes, Mice, Blastocyst, Pregnancy, Animals, Female, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Average
bronze